Linear Search

CS 5010 Program Design Paradigms "Bootcamp" Lesson 8.5

© Mitchell Wand, 2012-2015 This work is licensed under a <u>Creative Commons Attribution-NonCommercial 4.0 International License</u>.

Introduction

- Many problems involve searching
- General recursion is well-suited to search problems.
- In this lesson, we'll talk about a simple case: linear search

Learning Objectives

- At the end of this lesson you should be able to:
 - Recognize problems for which a linear search abstraction is appropriate.
 - Use general recursion and invariants to solve problems involving numbers

Example #1: function-sum

function-sum : Nat Nat (Nat -> Number) -> Number GIVEN: natural numbers lo ≤ hi and a function f, RETURNS: SUM{f(j) | lo ≤ j ≤ hi}

Examples/Tests

```
(begin-for-test
```

```
(check-equal?
  (function-sum 1 3 (lambda (j) j))
  (+ 1 2 3))
```

```
(check-equal?
  (function-sum 1 3 (lambda (j) (+ j 10)))
  (+ 11 12 13)))
```

Let's generalize

 As we compute, we will have computed the sum of some of the values. Let's call that sum sofar.

Representing this picture as data

sofar contains the sum of the f(j) for j in this region

hi

We can represent this picture with 4 numbers:

i

- lo
- **i**, which is the first value of j to right of the boundary
- hi, and

10

• **sofar**, which is the sum of the f(j) for j in the brown region

So what we want to compute is sofar + SUM{f(j) | i ≤ j ≤ hi} This is a function of **i**, **hi**, **sofar**, and **f**.

Contract, Purpose Statement, and Examples

```
;; generalized-function-sum :
     Nat Nat Number (Nat -> Number) -> Number
;;
;; GIVEN: natural numbers i and hi, a number sofar,
   and a function f,
;;
;; WHERE: i ≤ hi
;; RETURNS: sofar + SUM{f(j) | i \le j \le hi}
;; EXAMPLES/TESTS:
(begin-for-test
  (check-equal?
    (generalized-function-sum 1 3 17 (lambda (j) j))
    (+ 17 (+ 1 2 3)))
  (check-equal?
    (generalized-function-sum 1 3 42 (lambda (j) (+ j 10)))
    (+ 42 (+ 11 12 13))))
```

What do we know about this function?

- if **i = hi**, then
- (generalized-function-sum i hi sofar f)
- = sofar + SUM{f(j)| $i \le j \le hi$ }
- = sofar + SUM{f(j)|hi ≤ j ≤ hi}
- = (+ sofar (f hi))
- = (+ sofar (f i))

What else do we know about this function?

- if **i < hi**, then
- (generalized-function-sum i hi sofar f)
- = sofar + SUM{ $f(j)|i \le j \le hi$ }
- = (sofar + f(i))
 - + SUM{f(j) $|i+1 \le j \le hi$ }

```
take (f i) out of the
SUM
```

= (generalized-function-sum

(+ i 1) hi (+ sofar (f i)) f)

So now we can write the function definition

;; STRATEGY: If not done, recur on i+1.

(define (generalized-function-sum i hi sofar f)
 (cond

What happens at the recursive call?

sofar contains the sum of the f(j) for j in this region

The shaded region expands by one

What's the halting measure?

- Proposed halting measure: (hi i).
- Termination argument:
 - (hi i) is non-negative, because of the invariant
 i ≤ hi
 - i increases at every call, so (hi i) decreases at every call.
- So (hi i) is a halting measure for generalizedfunction-sum

We still need our original function

- ;; function-sum :
- ;; Nat Nat (Nat -> Number) -> Number
- ;; GIVEN: natural numbers lo and hi, and a
- ;; function f
- ;; WHERE: lo ≤ hi
- ;; RETURNS: SUM{f(j) | $lo \le j \le hi$ }
- ;; STRATEGY: call a more general function

(define (function-sum lo hi f)
 (generalized-function-sum lo hi 0 f))

Just call **generalized-function-sum** with **sofar** = 0.

Example #2: Linear Search

- ;; linear-search : Nat Nat (Nat -> Bool) -> MaybeNat
- ;; GIVEN: 2 natural numbers lo and hi,
- ;; and a predicate pred
- ;; WHERE: lo ≤ hi
- ;; RETURNS: the smallest number in [lo,hi) that satisfies
- ;; pred, or false if there is none.
- ;; EXAMPLES/TESTS

```
(begin-for-test
```

```
(check-equal?
```

```
(linear-search 7 11 even?) 8)
```

```
(check-false
```

```
(linear-search 2 4 (lambda (n) (> n 6))))
```

Remember, this

means the half-

open interval:

 $\{ j \mid lo \leq j < hi \}$

What are the trivial cases?

- if (= lo hi), then [lo,hi) is empty, so the answer is false.
- if (pred lo) is true, then lo is the smallest number in [lo,hi) that satisfies pred.

What have we got so far?

(define (linear-search lo hi pred)
 (cond
 [(= lo hi) false]
 [(pred lo) lo]
 [else ???]))

What's the non-trivial case?

- If (< Io hi) and (pred Io) is false, then the smallest number in [Io,hi) that satisfies pred (if it exists) must be in [Io+1, hi).
- So, if (< lo hi) and (pred lo) is false, then
 (linear-search lo hi pred) =
 - (linear-search (+ lo 1) hi pred)

Function Definition

;; STRATEGY: If more to search and not found, then recur

```
;; on (+ lo 1)
```

(define (linear-search lo hi pred)

(cond

```
[(= lo hi) false]
[(pred lo) lo]
[else (linear-search (+ lo 1) hi pred)]))
```

What's the halting measure?

- The invariant tells us that lo ≤ hi, so (- hi lo) is a non-negative integer.
- lo increases at every recursive call, so (- hi lo) decreases.
- So (- hi lo) is our halting measure.

Summary

- We've seen how generative recursion can deal with problems involving numerical values
- We've seen how context arguments and invariants can help avoid recalculating expensive values
- We've seen how invariants can be an invaluable aid in understanding programs

Learning Objectives

- At the end of this lesson you should be able to:
 - Recognize problems for which a linear search abstraction is appropriate.
 - Use general recursion and invariants to solve problems involving numbers

Next Steps

- Study the files 08-6-function-sum.rkt and 08-7-linear-search.rkt
- If you have questions about this lesson, ask them on the Discussion Board
- Go on to the next lesson