Linear Search

CS 5010 Program Design Paradigms "Bootcamp"

Lesson 8.5

Introduction

- Many problems involve searching
- General recursion is well-suited to search problems.
- In this lesson, we'll talk about a simple case: linear search

Learning Objectives

- At the end of this lesson you should be able to:
- Recognize problems for which a linear search abstraction is appropriate.
- Use general recursion and invariants to solve problems involving numbers

Example \#1: function-sum

function-sum :
Nat Nat (Nat -> Number)
-> Number
GIVEN: natural numbers $10 \leq h i$ and a function f, RETURNS: $\operatorname{SUM}\{\mathrm{f}(\mathrm{j}) \mid \mathrm{lo} \leq \mathbf{j} \leq \mathrm{hi}\}$

Examples/Tests

(begin-for-test
(check-equal?
(function-sum 13 (lambda (j) j))
(+ 12 3))
(check-equal?
(function-sum 13 (lambda (j) (+ j 10))) $(+11 \quad 12$ 13)))

Let's generalize

- As we compute, we will have computed the sum of some of the values. Let's call that sum sofar.

Representing this picture as data

sofar contains the sum of the $f(j)$ for j in this region

We can represent this picture with 4 numbers:

- lo
- \mathbf{i}, which is the first value of j to right of the boundary
- hi, and
- sofar, which is the sum of the $f(j)$ for j in the brown region

So what we want to compute is sofar + SUM\{f(j)|i>j $\leq \mathbf{h i}\}$

This is a function of \mathbf{i}, hi, sofar, and \mathbf{f}.

Contract, Purpose Statement, and Examples

; ; generalized-function-sum :
; ; Nat Nat Number (Nat -> Number) -> Number
; ; GIVEN: natural numbers i and hi, a number sofar,
; ; and a function f,
; ; WHERE: i \leq hi
; ; RETURNS: sofar + SUM\{f(j) | i $\leq \mathbf{j} \leq h i\}$
;; EXAMPLES/TESTS:
(begin-for-test
(check-equal?
(generalized-function-sum 1317 (lambda (j) j))
(+ 17 (+ 12 3)))
(check-equal?
(generalized-function-sum 1342 (lambda (j) (+ j 10)))
(+ 42 (+ 1112 13))))

What do we know about this function?

if $\mathbf{i}=\mathbf{h i}$, then
(generalized-function-sum i hi sofar f)
$=\operatorname{sofar}+\operatorname{SUM}\{f(j) \mid i \leq j \leq h i\}$
$=\operatorname{sofar}+\operatorname{SUM}\{f(\mathrm{j}) \mid \mathrm{hi} \leq \mathrm{j} \leq \mathrm{hi}\}$
$=(+\operatorname{sofar}(f$ hi))
$=(+\operatorname{sofar}(f i))$

What else do we know about this function?

if $\mathbf{i}<\mathbf{h i}$, then
(generalized-function-sum i hi sofar f)
$=$ sofar $+\operatorname{SUM}\{f(j) \mid i \leq j \leq h i\}$
$=($ sofar $+f(i))$
$+\operatorname{SUM}\{f(j) \mid i+1 \leq j \leq h i\}$
take (fy) out of the SUM
= (generalized-function-sum (+ i 1) hi (+ sofar (f i)) f)

So now we can write the function definition

; ; STRATEGY: If not done, recur on i+1.
(define (generalized-function-sum i hi sofar f) (cond
[(= i hi) (+ sofar (f i))]
[else (generalized-function-sum

$$
(+i 1)
$$

hi
(+ sofar (f i))
f)])

What happens at the recursive call?

sofar contains the sum of the $f(j)$ for j in this region

The shaded region expands by one

What's the halting measure?

- Proposed halting measure: (hi-i).
- Termination argument:
- ($\mathbf{h i} \mathbf{- i}$) is non-negative, because of the invariant i \leq hi
- \mathbf{i} increases at every call, so (hi-i) decreases at every call.
- So (hi-i) is a halting measure for generalized-function-sum

We still need our original function

; ; function-sum :
;; Nat Nat (Nat -> Number) -> Number
;; GIVEN: natural numbers lo and hi, and a
; ; function f
; ; WHERE: lo \leq hi
; ; RETURNS: SUM\{f(j) | lo $\leq \mathrm{j} \leq \mathrm{hi}\}$
;; STRATEGY: call a more general function
(define (function-sum lo hi f)
(generalized-function-sum lo hi 0 f))

Just call generalized-function-sum with sofar $=0$.

Example \#2: Linear Search

;; linear-search : Nat Nat (Nat -> Bool) -> MaybeNat
;; GIVEN: 2 natural numbers lo and hi,
;; and a predicate pred
; ; WHERE: lo \leq hi
; ; RETURNS: the smallest number in [lo,hi) that satisfies
; ; pred, or false if there is none.
;; EXAMPLES/TESTS
(begin-for-test
(check-equal?
(linear-search 711 even?) 8)

Remember, this means the halfopen interval: \{j|losj<hi\}
(check-false
(linear-search 24 (lambda (n) (> n 6)))))

What are the trivial cases?

- if (= lo hi), then [lo,hi) is empty, so the answer is false.
- if (pred lo) is true, then lo is the smallest number in [lo,hi) that satisfies pred.

What have we got so far?

(define (linear-search lo hi pred)
(cond
[(= lo hi) false]
[(pred lo) lo]
[else ???]))

What's the non-trivial case?

- If (< lo hi) and (pred lo) is false, then the smallest number in [lo,hi) that satisfies pred (if it exists) must be in [lo+1, hi).
- So, if (<lo hi) and (pred lo) is false, then
(linear-search lo hi pred) = (linear-search (+ lo 1) hi pred)

Function Definition

; ; STRATEGY: If more to search and not found, then recur
; ; on (+ lo 1)
(define (linear-search lo hi pred)
(cond
[(= lo hi) false]
[(pred lo) lo]
[else (linear-search (+ lo 1) hi pred)]))

What's the halting measure?

- The invariant tells us that lo $\leq \mathbf{h i}$, so (- hi lo) is a non-negative integer.
- lo increases at every recursive call, so (- hi lo) decreases.
- So (- hi lo) is our halting measure.

Summary

- We've seen how generative recursion can deal with problems involving numerical values
- We've seen how context arguments and invariants can help avoid recalculating expensive values
- We've seen how invariants can be an invaluable aid in understanding programs

Learning Objectives

- At the end of this lesson you should be able to:
- Recognize problems for which a linear search abstraction is appropriate.
- Use general recursion and invariants to solve problems involving numbers

Next Steps

- Study the files 08-6-function-sum.rkt and 08-7-linear-search.rkt
- If you have questions about this lesson, ask them on the Discussion Board
- Go on to the next lesson

